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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1655

PREDICTION OF VELOCITY REQUIREMENTS FOR MINIMUM TIME

ABORTS FROM THE MIDCOURSE REGION

OF A LUNAR MISSION

By Robert B. Merrick and George P. Callas

SUMMARY

Problems associated with quick returns to the earth from the midcourse region

of a lunar mission have been examined by relating errors in perigee height to some

of the errors inherent in any abort maneuver.

Abort trajectories were computed at several ranges and with various fuel

capabilities on both the outgoing and incoming legs of a typical circumlunar

trajectory. The representation of the physical system included the gravitational

effects of the sun and the moon and the second harmonic term of the earth's

oblateness, but abort rocket firings were taken as impulses.

A Keplerian trajectory was used for determining the direction of the abort

rocket thrust in the orbit plane and a modification to this approach is presented

which markedly reduces the altitude error, at perigee, due to the two-body

approximation of the four-body physical system. This modification is based on a

reference trajectory concept.

Four sources of error, other than the two-body approximation effects, were

considered and their influence upon the perigee height at return was examined

statistically. These error sources are the inaccuracy in the knowledge of posi-

tion and velocity at abort and the inaccuracies in the magnitude and aiming of the

abort rocket. The aiming error in the thrust applied during abort was responsible

for major perigee deviations.

The velocity increments necessary to correct the errors incurred by the abort

maneuver were computed at various points on the return trajectory. Less than

5 percent of the abort velocity increment is sufficient to correct these errors if

the correction is applied at a range of i00_000 km from the earth.

INTRODUCTION

A substantial effort has been devoted to analyzing abort procedures for the

launch phase of flight of a manned spacecraft but, aside from the work of Kelly



and Adornato (ref. i) and Miller and Deyst (ref. 2), little work has been done on
the capabilities and requirements of midcourse aborts.

There appears to be little possibility that an abort system designed for
launch conditions would be suitable for midcourse abort since the requirements
for speed of execution and aiming accuracy have opposite emphasis. The launch
abort must be executed immediately, must have very high thrust because of the
importance of time, but requires only moderate aiming accuracy (ref. 3), whereas
the midcou_se abort has less need for speed of execution but requires maximum
aiming accuracy.

The precise determination of the direction of the rocket thrust in midcourse
aborts would be straightforward if the gravitational attractions of the sun and
moonwere of negligible consequencein earth-moon space. Since these gravita-
tional attractions do have considerable effect_ it is highly desirable that the
prediction of the abort velocity allow for these forces in somefashion.

This report is devoted to the minimumreturn time abort in which time is all
important and the selection of a landing site is secondary. This type of abort
would be used whenthe quickest possible entry into the atmosphere was desired_
for example, in the event of a crack in the cabin wall 3 or of an impending major
radiation storm. The minimumtime return also provides a basis for evaluating
the return time penalty associated with selection of a landing site. Aborts for
which return time is not a primary factor are not considered herein.

This report presents the details of an abort navigation system which
determines the trajectory that returns safely in minimumtime and discusses the
performance of this system whenthere are errors in position and velocity at the
time of abort and in the magnitude and direction of the applied velocity incre-
ment. The navigation system presented here uses a simple modification to two-
body dynamics to obtain a better approximation to the four-body results.

NOTATION

e

Re

Rm

Rs

Rp

T

V

VH

eccentricity

range from earth

range from moon

range from sun

perigee radius

time

velocity

horizontal component of velocity
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vR

VHO

rE0

Vp

X_ Y_ Z

Xm_ Ym_ Zm

Xs, Ys, Zs

AV

AVp

7

@

e

H

i, j, k

m

0

P

R

radial component of velocity

initial horizontal component of velocity

initial radial component of velocity

velocity at perigee

Cartesian coordinates of vehicle's position

Cartesian coordinates of moon's position

Cartesian coordinates of sun's position

incremental velocity

incremental perigee velocity

flight-path angle

true anomaly

dimensionless coefficient_ Rp/R e

Superscripts

derivative with respect to time

vector quantity

Subscripts

earth

horizontal

unit vectors on Cartesian axis

moon

initial value

perigee

radial



PRELIMINARYCONSIDERATIONS

Applicable Midcourse Regions

As noted in the introduction, aborts considered here are based on a decision
to reduce the remaining flight time to the smallest possible value consistent
with a safe atmosphere entry but without regard to the touchdown point. This
approach leads naturally to separating a circumlunar trajectory into three phases
as shownin sketch (a). From the launch at point A to somepoint B, the location

B

D ¢

A

Sketch (a)

of which is fixed by the available

on-board fuel, flight time can be

reduced by preventing the circumlunar

phase of flight with an abort maneu-

ver. Beyond point B no time can be

saved by use of on-board thrust until

perilune is passed. From perilune to

point C on-board thrust can reduce

flight time but calculation of the

abort velocity increment is undesira-

bly complex this close to the moon.

Beyond point C the abort manuever is

less critical and flight time can be

reduced at the expense of increased entry velocity. Minimum time aborts are not

feasible beyond point D since the potential reduction in flight time decreases

and the entry velocity penalty increases as the abort point is moved nearer the
earth.

This report then, presents data for aborts initiated on the outbound leg of

the trajectory from point A to B and on the inbound leg of the trajectory from
point C to D.

To examine these abort considerations in a quantitative manner a ballistic

circumlunar trajectory starting from Cape Canaveral on February i0, 1966, was

selected as a reference. The details of this trajectory are considered later.

After preliminary investigation, point C was fixed somewhat arbitrarily at

the moon's nominal sphere of influence boundary (66,000 km) and point D was taken

at 200,000 km from the earth. The value for point D was selected after consider-

ing the approximate relationship for the increase in perigee velocity associated

with inbound aborts with constant perigee.

SVp : AV I_)

When the distance from the earth is large, the velocity of the spaceship is small

and the quantity in the brackets is small, increasing at 200,000 km to 0.134 for

the reference trajectory.

4



Fuel Available

The amount of fuel available for abort purposes on the lunar orbiting

mission will be substantial since a velocity increment of roughly i km/sec is

needed near perilune to put the space vehicle into circular orbit about the moon_

and another velocity change of nearly the same magnitude is needed to depart from

the moon and return to the earth. With an allowance for midcourse corrections

and a reserve there will be a velocity increment of about 2 km/sec available for

emergencies while approaching the moon.

For a strictly circumlunar mission there need not be as much fuel on board.

Results are presented in this report for velocity increments from 1/2 to 2-1/2

km/sec. Abort performance falls off markedly below the level oi' 1/2 km/sec.

ANALYS IS

The Mathematical Model

In the development of the equations of

motion a restricted four-body system was

assumed with a spherical and homogeneous

sun and moon. The second harmonic term of

the earth's oblateness was included. The

coordinate system is Cartesian and geocen-

tric with the Z axis along the earth's

polar axis_ positive to the north. The

positive X axis is in the direction of

the vernal equinox and the Y axis is

oriented to form the right-handed system

shown in sketch (b).

The equations of motion are, from

reference 4:

• ',_HISLE

(X,Y,ZI:

EARTH

(0,0,0)

Sketch (b)

"X =-tZe----_X ll + J(Ra-_-e_2 (1-5-_)!- %(X - Xm)
Re 3 Re _ A m

_mXm

Rm s

 s(X - xs)
3

&s

gsXs

Rs 3

_mYm _s( Y Ys) _sYs

Rm 3
3

_s Rs 3

z_e_

I J_-_-a_2 (3 ZR_)I _m (ZRe 3 \Re/ am 3

_mZm _s(Z Zs) _sZs

Rm 3 As 3 Rs 3



where

Re = _X2 + y2 + Z2

Rm = JXm 2 + Ym 2 + Zm e

R s : _Xs 2 + Ys 2 + Zs 2

A m : J(X - Xm) 2 + (Y - Ym)2 + (Z - Zm) e

:J<× -×s) + (Y - Zs) + (z -

_e : 3"986135 xl014 m3/sec2

_m = 4"89820xI012 mS/see2

_s = 1-3253 ×102° mS/see2

a : equatorial radius of the earth = 6.37826×i0 e m

f f

J : l.o24oXlO-S

The terms involving only distances between the earth and moon or earth and

sun, such as _mXm/Rm 3, arise from the fact that the coordinate system is not

inertial. These terms account for the acceleration of the coordinate system with
respect to inertial space.

The equations of motion for the vehicle are solved by means of a Cowell

"second-sum" method. A fourth-order Runge-Kutta method is used to start the inte-

gration and to change the step size during the flight. The position of the sun

and the moon are determined by interpolation of data from magnetic tape ephemer-

ides. Within the sphere of influence of the moon_ taken as 66_000 km from the
moon_ the origin of coordinates is translated to the center of the moon.

All abort trajectories obtained with this mathematical model resulted from

perfect abort maneuvers; that is, the knowledge of position and velocity before

abort was exact and there was no error in the control of the magnitude and direc-

tion of the abort thrust. Following such a maneuver_ a trajectory to perigee was

computed with the four body simulation. Error analyses were then made for devia-

tions about these nominal abort trajectories.



The Two-BodyAnalysis

The objective throughout this report is to determine the thrust direction
which will return the space vehicle to earth in minimumtime and, naturally_ it
is desired to makethis determination the simplest compatible with satisfactory
accuracy. There are design restrictions which must be satisfied because of the
limited fuel supply or velocity increment capability, and the necessity of
achieving safe entry conditions.

The four-body nonlinear differential equations of motion given previously
are difficult to solve and it is unlikely that a simple meansfor predicting abort
velocity requirements will be derived from them. The equations that describe the
motion of a space vehicle of negligible massmoving in the gravitational field of
a spherical homogeneousearth are muchsimpler. This restricted two-body system
has known solutions in which the quantities of interest are related by algebraic
equations rather than differential equations; consequently, a two-body analysis
is very advantageous if sufficient accuracy can be attained. Therefore, in the
following paragraphs an equation will be developed, based on the two-body system
just discussed, _hich specifies the _relocity increment and reentry conditions.
Later, suitable corrections will be added for the secondary effects presently
neglected.

On lunar trajectories, satisfactory entry conditions maybe expressed by a
specified vacuumperigee. In this report a specified perigee of 6,450 km is con-
sidered. With this perigee and with eccentricities between 0.85 and 1.15, it may
be determined from the relation

Re
I _ 2(1 + 2ReRp - ReS(l e)- tan y = _-Rp e) + -

JY + e

that the flight-path angle at 400,000 feet (121.92 km) is -5.0 ±0.25 ° •

Consider now the two-body system previously mentioned, the space vehicle of

negligible mass moving in the gravitational field of a spherical homogeneous

earth. In this system the minimum time to return to a prescribed perigee from a

given range with a restricted velocity increment is given by an orbit in the orig-

inal plane of motion; that is_ the orbital plane is not changed by the abort fir-

ing. A proof of this fact is given in appendix A.

It has now been shown that a planar analysis is sufficient to develop the

proposed two-body prediction equation. The development is continued with the

general equation of a conic trajectory,

v2 _ e(l e)
Re Rp

and at perigee

2Re be(l - e)

VP s : Rp Rp

7



SO

Since the angular momentum of the vehicle immediately after an abort is the same

as the momentum at perigee, we have

ReVH

Vp = Rp
also

V2 : VH2 + VR2

Substituting these two equations into the previous one gives the hodograph
equation

= vR2+ I
Re 2 - Rp 2 Re e + R

(i)

This is another form of the general conic equation. Now if Rp is a fixed
vacuum perigee height and if Re is a fixed range at which the abort firing is

to be accomplished, then the velocity vector after abort must satisfy this equa-

tion; that is, any conic trajectory, of whatever eccentricity, as long as it has

the desired perigee height satisfies this equation at any specified range. A

quantitative picture of the velocities which must exist after an abort firing is

given in figure i for Rp = 6,450 km and various ranges, R e .

The total velocity vector achievable by an abort firing is determined by the

components of the velocity just before abort, VRO and VHO , and the fuel supply or

velocity increment capability available. Graphically, the achievable velocities

which will effect a safe entry are those that lie within the circle and also lie

on the hodograph plot in sketch (c).

Radius cf _irele is -4

equal tO t_ie avaliable

velocity increment
P

------- Hodograph equation plotted

for a particular Re, Rp

Quickest possible ret_n

V H

Sketch (c)

Examination of this sketch shows

several possibilities. If the circle

of achievable velocities is very

small, corresponding to a negligible

velocity increment, no solutions will

exist. Physically, this corresponds

to a space vehicle which has run out

of fuel or has a badly damaged engine.

Without some velocity increment

capability the reentry conditions

cannot be changed.

If the circle of achievable

velocities is somewhat larger, or if

the symmetrical branches of the hodo-

graph are closer together because of

increased range (see fig. I)_ then

there will be one branch of the hodo-

graph going through the circle as

shown in sketch (c).
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The third possibility is that both branches of the hodograph will go through

the circle of achievable velocities. The usual situation for the data considered

in this report is that the velocity increment and the range are both large;

therefore, the circle intersects both branches.

The solution on the left branch of the curve corresponds to an abort

maneuver in which the direction of the spacecraft's orbit about the earth is

reversed. This will result in retrograde reentries which are undesirable because

of the higher velocity of the spacecraft relative to the atmosphere rotating with

the earth, but they may be tolerable and they must be considered in point return

analyses. These left-branch returns are not considered further in this report

since it is shown in appendix B that the minimum flight time to perigee is asso-

ciated with that achievable hodograph point for which VR is an algebraic mini-

mum. This point, marked in sketch (c), is always on the right-hand branch of the

hodograph. To obtain the components of velocity which give the minimum flight

time return a fourth-order algebraic equation must be solved. This prediction

equation is derived in appendix C.

Effects of Two-Bo<v Ana<vsis

When the direction of the abort rocket firing is determined with a scheme

that ignores the moon and the sun, substantial error is incurred. Figure 2 shows

the perigee miss distance as a function of range for aborts from the base trajec-

tory. Near the earth, as expected, two-body predictions suffice, but at only

!00,000 km, the 0.50 km/sec velocity increment abort misses desired perigee by

290 kilometers. With larger velocity increments the error is reduced since there

is less return time for the moon-sun effects to perturb the intended abort tra-

jectory, and the apogee of the return trajectory is less distant from the earth.

The data in figure 2 show that the error is far too great for most cases of

interest and this establishes the fact that predictions of abort velocity

requirements cannot ignore the effects of both the moon and the sun.

On lunar trajectories with approximately the same enroute times, the lunar

perturbations will vary only slightly with the particular day or month of launch

since the geometry of the earth-moon-vehicle relationship is essentially constant.

The major effect of the moon's gravitational pull might then, with reasonable

generality, be incorporated into the prediction equation to materially shrink the

lunar bias. To ascertain the validity of this approach, some computer runs were

made to isolate the perturbations due to the moon and the sun separately. The

gravitational constant of the sun was set equal to zero for one series of runs,

and then another series was run with the gravitational constant of the moon set

equal to zero. These results are presented in figures 3 and 4.

These figures show that the gravitational pull of the moon has the larger

effect but they also show that the gravitational pull of the sun is substantial

if either the range at abort is large or only moderate amounts of fuel are

available. It is now apparent that even if the lunar bias were reduced to an

acceptable level by some general modification of the t_o-body analysis, the errors

in the prediction of perigee would still be too large for many cases of interest
because of the sun.

9



The earth-sun-vehicle geometry is not constant, and it is felt that an effort

toward generality here would call for an unwarranted amount of complexity in on-

board equipment. Thus, it was concluded that each lunar trajectory should be

treated individually.

Modified Two-BodyAnalysis

With these facts in mind, the two-body prediction equation was adapted for

the reference trajectory in a very simple fashion. In shooting a rifle at a tar-

get a substantial distance away, one soon learns to use the sights (or prediction

system) of the rifle in a modified fashion by aiming above the target to allow

for the drop due to gravity. This same simple principle was applied to the two-

body equation developed in appendix C.

It is desired to hit a perigee of 6,450 km. When the prediction equation

was used with a given velocity increment, range at abort, and a desired perigee

of 6,450 km, it was observed that the perigee achieved was equal to 6,450 km
minus an error term. Figure 2 illustrates these results.

The modified procedure is to use the prediction equation with the same

velocity increment, the same range at abort, and a perigee equal to 6,450 km plus

the error term. This is directly analogous to target shooting; if your first

shot falls five feet below the target then when you fire the second shot your

sights are set on a point five feet above the target.

When the two-body equation was furnished with a velocity increment, a range

at abort, and a perigee equal to 6,450 km plus the error term, then the perigee

miss distance was reduced. The perigee achieved was equal to 6,450 km minus a

second error term, which is much smaller than the first error calculated. If

this aiming principle is applied again with a velocity increment, a range at

abort, and a perigee equal to 6,450 km plus the first and second error terms, then

a further reduction in miss distance will be obtained.

All the modified two-body prediction-equation data presented in this report

were obtained by using in the equation a perigee equal to 6,450 km, plus the

first and second error terms. This was sufficient to reduce the perigee miss

distance to a practical level throughout the entire range of aborts considered.

Table I shows how effectively the moon-sun bias was reduced. The unmodified

results are taken from the graph in figure 2 and are tabulated for convenience in

comparing the results. Out to 250,000 km the perigee miss distance is negligible.

Some error exists at 300,000 and 350,000 km, but it is only appreciable at the

lower abort velocity increments, and it is shown later that these range-velocity

increment combinations are not likely to be used. It is, of course, also true

that the intended trajectory and the actual trajectory achieved by the space

vehicle will differ somewhat because of injection errors and abort thrust errors

so that it would be pointless to refine this prediction scheme further.

This modification to the two-body equation is based on the vehicle's being

on a reference trajectory and it is pertinent to discuss the sensitivity of the

i0



schemeto deviations from this reference trajectory. It was felt that the
sensitivity to position deviations would be small since the schemeworks on range,
and the four-body geometry is not altered appreciably by a few hundred kilometers
of horizontal deviation. In an actual trajectory, velocity deviations before
abort should be small since the crew has direct control over velocity and will
periodically makea correction with vernier rockets. However, a digital simula-
tion was madeto obtain somedata on this point. A trajectory was computed for
launch conditions identical to the base run except that the launch velocity mag-
nitude was increased 0.50 meter/sec. Aborts from this trajectory, using a veloc-
ity increment of 1.50 km/sec, had perigee errors of less than 5.0 km even at a
range of 300,000 km where a horizontal deviation of 311 km occurred. This was
highly satisfactory and consequently no further data were obtained on this point.

Error Analysis

Certain errors will appear in the abort maneuverregardless of the manner in
which the abort maneuver is mechanized. The errors considered in this report are
the inaccuracy in the knowledge of position and velocity at abort and the imper-
fect control of the magnitude and direction of the thrust during abort. The sta-
tistical effects of these errors upon the perigee distance attained have been
computedin this report.

A root-mean-square estimate of the errors in position and velocity was
attained following the analysis of Smith in reference 5 wherein optical instru-
mentation, with Gaussian errors of approximately i0 arc seconds magnitude, was
assumed. This analysis employed statistical filter theory to obtain an optimal
estimate of position and velocity from the observations available. An observa-
tion schedule, detailed in appendix D, involving only 40 observations on the way
to the moonwas used in the present report.

Fromthe rms estimate of the errors in position and velocity, the techniques
presented by McLeanin reference 4 were used to predict root-mean-square errors
in perigee caused by position and velocity information. This involves a linear
prediction schemeabout a reference trajectory.

The imperfect control of magnitude and direction of the abort thrust was
studied using a matrix analysis illustrated by Battin in reference 6 where the
errors in magnitude and direction are independent randomvariables. The errors
were not restricted to the plane of the orbit, and they were assumedto be
Gaussian.

RESULTSANDDISCUSSION

Primary Data

A summaryof the data obtained relating minimumreturn time to the range at
abort is presented in figures 5(a) and 5(b) for the outbound and return legs of
the circumlunar trajectory. The minimumtime to return naturally diminishes with

ii



increasing amounts of abort velocity capability, but it is observed that the
increase in performance obtained in going from 0.50 km/sec to 1.0 km/sec is very
marked. At less than 0.50 km/sec the abort capability is marginal. Indeed, fig-
ure 6, a plot of total time from injection to perigee versus range at abort,
showsthat an abort which is accomplished at outbound ranges greater than 277,000
km with 0.50 km/sec, is valueless since a quicker return is accomplished by doing
nothing. It is interesting to note that for the lower abort velocities, it is
possible to return more quickly by aborting on the return leg of the mission even
before the space vehicle has accomplished half of the trip, in terms of hours, to
the moon. The data of figure 6 determine the location of point B in sketch (a).

The error analysis techniques previously discussed were applied to abort
trajectories calculated with the modified two-body equation. The calculations to
obtain the root-mean-square errors in the knowledge of position and velocity
resulted in position errors of the order of 50.0 kilometers and velocity errors
around 5.0 m/sec. The maximumrms effect of these errors at perigee, due to
both position and velocity errors simultaneously, was 17.0 kilometers. These
results for the outbound leg are shownin table II. The rms errors obtained are
dependent on the observation schedule and moreparticularly on the relation of
the time of abort to the observation schedule, the errors being smaller after an
observation whenthe position and velocity are knownmost accurately. The data
shownhere were obtained from abort just prior to an observation whenthe posi-
tion and velocity are known least accurately. These errors are tolerable and it
follows then that abort considerations do not necessitate an increased numberof
celestial observations for better determination of position and velocity. These
data also substantiate the argument that the modified two-body equation is not
sensitive to deviations from the reference trajectory.

A statistical estimate of the deviation in perigee height due to faulty
control of the magnitude of the abort rocket thrust was obtained. A 1-percent
root-mean-square deviation in the thrust magnitude produced the surprisingly
small errors observed in figure 7. A 1-percent error in a 2-1/2 km/sec abort is
a velocity error of 25 m/sec, which is very large relative to normal burnout
errors. These data showthat perigee height is very insensitive to errors in
velocity magnitude along the thrust axis of the minimumtime abort. This thrust
axis is primarily along the radius vector from the earth to the vehicle.

This marked insensitivity becomesunderstandable if the general conic
equation, in the previously developed hodograph format, is reexamined and the
partial derivatives _Rp/_VR and _Rp/_VH are evaluated from it. These partial
derivatives are:

_VR _ee

_ = Re2 - Rp 2 (VH)

_VH _e e
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and

_v_ _vH Re 2 _ pp v_

Now if R e is greater than i00,000 km, about 16 Rp, then

__ < <_
8VR _VH 255 V_ 127.5

since VR is less than 2.0 VH at these distances. Thus, for the ranges consid-

ered, a unit error in radial velocity after abort is less than one-hundredth as

significant as a unit error in horizontal velocity after abort. This implies that

when velocity correction mechanisms are designed for the lunar mission, particular

attention should be given to the horizontal component errors.

Since the minimum time return requires the abort thrust to be fired almost

radially, errors in the aiming of the abort rocket will produce, almost exclu-

sively, velocity errors in the horizontal plane. By the analysis of the previous

paragraph these errors should be significant. Indeed, perigee errors resulting

from aiming inaccuracies of the abort rocket are of major significance and appear

to be the only serious errors when the modified two-body equation is used. These

aiming error data are shown on figures 8(a) and 8(b) for the outbound and inbound

legs of the trajectory, respectively. An rms error of 0.50 ° in aiming the abort

velocity vector was assumed. The perigee error from this source ranges from 50

to 300 km for an abort at only iO0,000 km, on the outbound leg _¢ith velocity

increments of 0.50 to 2.50 km/sec.

Midcourse Correction Following an Abort

Since it is likely that substantial error will be incurred in the abort

maneuver, it is necessary to judge how much fuel should be saved for a vernier

firing near the earth. Sufficient information is contained in the hodograph equa-

tion to make this judgment when prospective perigee errors are known. The veloc-

ity increment required to correct a perigee error does not change very much with

the source of the error as is shown in figure 9- The central curve on this fig-

ure is an expanded scale version of the R : i00,000 kilometer curve in figure i.

It should be noted that the abscissa scale is expanded a hundred times more than

the ordinate. Also shown on the curve is hodograph data for values of Rp ±300
kilometers away from the nominal value. Examination of this graph shows that the

velocity increment required to correct from any trajectory with perigee of 6,750

km to a trajectory with perigee of 6,450 km is never as much as 20 m/sec if the

correction is applied at i00,000 km. The applicable area of the hodograph plot is

further restricted by the knowledge that aborts on the way to the moon have eccen-

tricities less than i while aborts after perilune have eccentricities between 0.98

and 1.13.

13



The penalty caused by making the velocity correction at 20_000 km rather

than at i00,000 km can be ascertained with the aid of figure i0 which presents

hodograph data for a range of 20,000 km and for all trajectories having perigee

errors of ±300 km and 0. Here it is shown that the velocity increment required

to correct from any trajectory with perigee of 6,750 km to a trajectory with per-

igee of 6,450 is never more than ii0 m/sec if the correction is applied at 20,000

km. !n this example then, delaying the correction until the space vehicle is

quite near the earth (20,000 km) costs an extra 80-90 m/sec of velocity increment.

It should be noted that because of the different ordinate and abscissa scales

used in figure I0, the minimum velocity increment between the two curves is not

the perpendicular distance between the curves but more nearly the horizontal
distance between these curves.

0ver-all_ it is interesting to note that the large end-point error of 300 km

requires a velocity increment correction which is only a few percent of the abort

velocity increment, if the correction is made at i00,000 km.

Graphical Prediction of an Abort Maneuver

An extremely simple abort scheme is possible with hodograph data displayed

in figures 9 and i0. If the astronaut can reasonably estimate range, radial

velocity, and horizontal velocity, he can accomplish a safe return even though

both the on-board computer and communications from earth have failed. Preprinted

graphical representations of the hodograph equation at many ranges together with

current estimates of range and the velocity components give sufficient informa-

tion to determine a satisfactory direction and magnitude of the rocket thrust.

The astronaut can choose either the least velocity increment necessary to give

the space vehicle velocity components which lie on the hodograph for the desired

perigee, saving substantial fuel for further corrections, or any larger velocity
increment available to him which will decrease the return time.

Figures i, 9, and I0 are drawn directly from the general conic equation in

the hodograph format. That is, they present two-body equation information for

returning to a desired vacuum perigee. Similar curves can be drawn from the

results of modified two-body equation calculations. Thus the effects of the moon

and the sun on the reference trajectory can be incorporated into the velocity
component presentation given the astronaut.

CONCLUSIONS

A modified Keplerian orbit was used in a midcourse abort study for determin-

ing the direction of the abort thrust that will achieve a minimum time return.

The minimum time return calculation provides the information needed for evaluat-

ing the time penalty associated with a fixed point abort. Aborts were considered

on both the outbound and return legs of the flight.

14



The errors in making the abort maneuver and their effects on the abort

trajectory were investigated. The velocity increments necessary to correct the

errors introduced at abort were computed at various ranges on the return leg of
the abort.

From the results of this study the following conclusions can be drawn:

i. The modified two-body equation developed in this study is sufficiently

accurate for determining the direction of the abort thrust to achieve a minimum

time return to satisfactory entry conditions.

2. The modified two-body equation is based on the vehicle's being on a

reference trajectory but the vacuum perigee is predicted with satisfactory accu-

racy when the vehicle is substantially off the reference trajectory.

3. Perigee altitude was found to be insensitive to errors in knowledge of

position and velocity before abort; and also to errors in the magnitude of the

abort velocity increment. However, small errors in aiming the abort rocket

resulted in very large perigee altitude errors. Even though the abort maneuver

may introduce large perigee errors, a vernier correction made at a range of

i00,000 kilometers from the earth would require less than 5 percent of the abort

velocity increment to null the root-mean-square perigee error.

4. Abort performance falls off markedly below a velocity increment

capability of 0.50 km/sec. For these lower velocity capabilities, there is only

a limited region on the outbound leg where an outbound abort has a time advantage

over an inbound abort.

5. If a reasonable estimate of range, radial velocity, and horizontal

velocity can be made, a safe return can be accomplished even though both the on-

board computer and the communications from the earth have failed. Preprinted

graphical representations of the hodograph equation at various ranges, together

with current estimates of these quantities, give sufficient information to

determine the direction and magnitude of the rocket thrust required.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Jan. 3, 1963

15



APPENDIX A

CONSTANCY OF ORBIT PLANE

It is the purpose of this appendix to show that the minimum time to return

to a prescribed perigee from a given range with a velocity increment restriction

is given by an orbit in the original plane.

This will be accomplished by demonstrating that if one desires to change

from a given orbit to another orbit, with specified conic characteristics but

unspecified plane, using a minimum velocity increment, the planes of the two

orbits must be the same. This is sufficient to attain the objective of this

appendix because it may then be argued that if el and Tpl are the best out of

plane conic characteristics available, these same conic characteristics can be

obtained in plane with a lesser velocity increment. The difference in velocity

increments can then be used to further reduce Tpz.

yTo
(×_,Yl,Zl)

x

(io,_o,O)

Sketch (d)

Let the vehicle be anywhere on its

orbit. Choose an earth-centered axis

system with the positive X axis through

the vehicle and the X-Y plane as the

original orbit plane, sketch (d).

Let _i = X1Y + YIJ + Zlk be the

velocity vector which together with the

initial Re determines a trajectory with

the desired conic characteristics. If we

rotate the Re, V1 plane about the X

axis into the X-Y plane, the velocity

vector is now V2 = x2_ + ?2J + (O)k.

If q_ is the angle of rotation about

the X axis, then

[i00]i]l/Yl/ " cos flO sin Y2 or Y1 : Y2 cos 9

[.ZIJ -sin qo cos 2 Zz = -Y2 sin

For any value of _, (0 ! _ < 2_) a velocity vector is specified and a plane

is determined through R e and _. In this plane a trajectory exists, determined

by R e and V, which has the specified conic parameters.

The velocity increment f_ = _z - _o and

i2IAV = (XI - Xo) 2 + (Yl - Yo) 2 + ZI 2 = (X2 - Xo) 2 + (Y2 cos flo- Yo) 2 + Y2 2 sin2?

16



l_vi2 = _22 + _22 + _o_ + _o2 - _o_ - _o_2cos
and IZ_VI2 has extremal values at 2YoY 2 sin qo = 0 or at q0 = O, _.

Now _i = Xl_ + YI_ + ZI_ = X2Y + Y2 cos qO 7.- Y2 sin q0 _ and Vl is in the

X-Y plane for both _ = 0 and q0 = _. If Yo and Y2 have opposite signs, the

minimum val.ue of IAVI is obtained at q0 = _ and the maximum occurs at q0 = O.

If Yo and Y2 have the same sign, the minimum value of IZIVI is obtained at

q_ = 0 and the maximum value occurs at q0 = _. Thus for minimum velocity

increment the two orbits are coplanar.
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APPENDIXB

MINIMUMTIMETORETURNREQUIRESMINIMUMVR

It is the purpose of this appendix to showthat the minimumtime to return
to a prescribed perigee from a given range is associated with the algebraic
minimumof available radial velocity components. Equation (BI) below is the
previously developed hodographequation.

or

= RP 2 2_eRp (R i p)
VH2 Re 2 _ Rp 2 VR2 + Re e + R

Multiplying equation (BI) by Re 2 - Rp 2 and transposing gives:

Re2VR 2 = (Re 2 - Rp 2)(VH 2 + VR 2) 2_eRp (Re - Rp)
Re

Re2 - RP2 V2 2_eRp (Re - Rp)
VR 2 _ Re 2 Re 3

(B1)

(B2)

The standard form of the general conic equation is:

V2 - 2_e be (i -e) (B3)
Re Rp

Now by equation (B2) it is clear that if IVR21 > IVRII then 11/21 > IV11 for

any given Re and Rp, with R e > Rp. Similarly, by equation (B3) if IV21 > IVll

then es > el; therefore, if IVRal > IVRII then e2 > el.

It is now sufficient to show that on the outgoing leg, where VR > O,

minimum time and minimum e go together while on the incoming leg, where

minimum time and maximum e go together.

VR<O,

The conic equation_ in polar coordinates, is:

H2

_e

Re = i + e cos e

Differentiating this expression and using R28 = H gives

ie = _ee sin 8 = bee _i - cos28 = _ee

H H 4_eRp(l + e)

1 - cos28

dRe _ ]Re2(eRe : d--{--=_R-_
i) + 2ReRp -Rp2(e + I)

Re2

18



and

Re
dt =--

J_e4Re2(e - 1) + 2ReR p Rp2(e + 1)

The time to return to perigee on inbound orbit

dR e

Tin : _RRp
0 J_e _Re2(e

R e dire

i) + 2ReRp -Rp2(e + I)

where be, Rp, and e are parameters in the integral.

dTin

de _RIP Req_p _ i) (Re2 -Rp2)dRe
-- =_ ,_e - [Re2(e _ i) + 2ReRp _ Rp2(e + l)]S/

2

1 [Rp l Re Rp
: -

_R
o J_e _e

Re _ Re2Rp

(Re 2 - Rp2)dRe

Re2(e - i) + 2ReR p -Rp2(e + I,)]s/2

dTin = _ _RRP Ze Re 2 - Rp 2 dR e
de 2 Re2Rp _e so

(B_)

In this form we see how to choose the sign of the radical which determines

the sign of the integrand. We may also write:

Re2(e - i) + 2ReRp- Rp2(e + i) = (Re - Rp)[+(Re + Rp)e - (Re - Rp)]

so that

dITin

de

i _RP Re J_p

--: - JRo

(Re + Rp)dRe

_ is/2
(Re Rp) I/2 [(R e + Rp)e - (Re - Rp)

(B5)

19



This integrand has singularities at perigee and at apogee. The apogee singularity

does not lie within the region of integration but the perigee singularity is at

one end point of the region of integration. However, reference 7 shows that this

integral is convergent; therefore, dTin/d e < 0 for all e. Since Tin is a

continuous function of e, we now know that Tin decreases with every increase in

e. Therefore, on the incoming leg the minimum time solution for a given range and

perigee altitude is associated with the maximum available eccentricity.

On the outgoing leg orbits with eccentricities equal to or greater than one

do not return or have infinite return time. It is only necessary then to consider

elliptical orbits so we may write for the time to return to perigee on the out-
going leg:

I RP 3 1112Tou t = (2_) Be(l - e)S - Tin

where the period of the complete elliptical orbit is

• Fm.,sq_-/2

de L (1 e)-5j2(ll
de

Both terms here are positive for all e < 1.0. Therefore_ on the outgoing

leg, the minimum time solution for a given range and perigee altitude is associ-

ated with the minimum available eccentricity. Thus it has been shown that the

minimum time to return is associated with the algebraic minimum of available

radial velocity components.
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APPENDIXC

DERIVATIONOFTHEABORT-VELOCITYPREDICTIONEQUATION

The derivation of the equation, whose solution yields the direction of the
abort thrust for a minimumreturn time trajectory, is obtained by combining the
hodograph equation with the equation for the change in velocity.

The hodograph equation is

p2 2_eO
VH2 - 2 VR2 + R_I + p)

i - 0

(cl)

and the equation for the change in velocity, SV, is given by

(nv) _ = (vs - V_o)2 + (vs - Vso)_ (c2)

Solving equation (CI) for VH, substituting into equation (C2)_ and clearing

yields

I I1 - 0_ vR_ - 2VRoVR + rio + vsO_ - (nV)2 +

2

s(l+ o) _V_o I - o2

(C3)

Letting

Q =Vffo+ Vffo- (z_v)_+
2BeP

_(i + o)

equation (C3) becomes

_/

+ (-_QVRo)v_ + [Q2 (c_-)

21



Dividing b°th sides °f equati°n (C4) bY (_ 1 2")
- 0

gives

8P_H0_e ]

This equation, a quartic, can then be solved for the required value of VR

which may be substituted into equation (CI) to give the required VH. Such a

mathematical solution is fairly lengthy. A graphical solution, however, is quite

simple and in many cases is sufficiently accurate.
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APPENDIXD

OBSERVATIONANDVELOCITYCORRECTIONSCHEDULEUSEDONOUTGOINGTRAJECTORY

Right ascension, declinatio_ and subtended angle of the appropriate body are
measuredsimultaneously at each observation.

T = 0.0 is injection time.

T = 3.5 hr begin 8 earth observations space 0.5 hour apart.

T = 8.0 hr begin 7 moonobservations space 0.5 hour apart.

T = 12.0 hr makevelocity correction.

T = 24.0 hr begin 4 earth observations space 1.0 hour apart.

T = 28.0 hr begin 8 moonobservations space 1.0 hour apart.

T = 36.0 hr makevelocity correction.

T = 64.0 hr begin 4 moonobservations space 1.0 hour apart.

T = 68.0 hr begin 4 earth observations space 1.0 hour apart.

T = 72.0 hr makevelocity correction.

The instruments used in the observations are assumedto have a minimumrms
error of i0 arc seconds with a meanof zero. The error increases as observed
body is approached.

Abort Rocket: The aiming error here was taken as 0.5° rms with zero mean.
In conjunction with the aiming error, calculations were madefor a thrust magni-
tude error of 1.0 percent and also for a flat i.O m/sec cutoff error.

Base Trajectory: Injection occurs on Feb. i0, 1966, with Ro = 6,499.02 km,
Vo = 11.001372 km/sec, and Yo = -1.26Xi0-6 deg. Perilune is reached in 83.72
hours and is 5,713 km (1,738 + 37975).

23



REFERENCES

l°

.

.

.

.

.

Kelley, Thomas J., and Adornato, Rudolph J. : Determination of Abort Way-

Stations on a Nominal Circumlunar Trajectory. ARS Jour., vol. 32, no. 6,

June 1962, pp. 887-93.

Miller, James S., and Deyst, John J., Jr.: Preliminary Study of Aborts from

Circumlunar Trajectories. Instrumentation Laboratory, MIT Rep. E-I124,

March 1962.

Slye, Robert E.: Velocity Requirements for Abort From the Boost Trajectory

of a Manned Lunar Mission. NASA TN D-I038, 1961.

McLean, John D., Schmidt, Stanley F., and McGee, Leonard A.: Optimal

Filtering and Linear Prediction Applied to a Midcourse Navigation System

for the Circumlunar Mission. NASA TN D-!208, 1962.

Smith, Gerald L., Schmidt, Stanley F., and McGee, Leonard A.: Application of

Statistical Filter Theory to the Optimal Estimation of Position and Velocity

on Board a Circumlunar Vehicle. NASA TR R-135, 1962.

Battin, Richard H.: A Statistical Optimizing Navigation Procedure for Space

Flight. Instrumentation Laboratory, MIT Rep. R-341, Sept. 1961.

7- Woods, Frederick S.: Advanced Calculus. Boston, Ginn and Company, 1934.

24



_D
(D

4
O

L°_ o(D
[D

_n; i O

A (D
rO p

H "H O

H _ 0
A ,_ r-t
0 © ®

©

f-_ _ 0 ,-_

r._ -O O
H m

_d

rf_ rn

o
_ m

H

m J
I

4

O

(I) O

--4o

OJ

_,o

O

,So
r-t

®
•_I _z_

•_ °r-I

O ,r-I

O

N

O
O
O

u'N

O4

Jo
,-t

r-t

--4o
Od

r-t

uN

[---cO

CO
Od

0
0
0

O

',.D

4o

',.D

_-O
c_

O'x

c;o
M_

d,o
cq
,-t

O'_O

O

O
O

O

r-I

CI3

Jo
'.D

,5o
CO

_.D

d,o
c_
,-t

,y

(_O'3

6c_
O0,3
O'_

O
O
O

O
0,1

oO

_o
oa

oh

Jo
CO
r--I

J "
O0
0d

r-tOO

_4

cq _
O

0
0
0

Od

oO Od

,5
cO
Od

o2) t2_

CO

[-.._ [..__

t'--

_.OM)

6_
u-x r-t
CY_

I I
I I
I I

O
O
O

O

O

cqO'x

U'_ r-t
(Xl
,-t

I I
I I
I I

I I
I I
I I

O
O
O

L_
Or'/

25



H

b_

O

F_

O
m

P_

C¢

I

!

t
o

!

4
I--t

N

E-_

E_

q

H
C)

S

A

O
H
E-_

cQ
o
P_

O

£

o
N

@

@
@
b0

@
P_

O_

b
@
u_

Lr_

II

J

O_

o o

°r-_

c}
@

II

_D

C_

oq
O
Oh

S

{YB
O

CO
',O
b--

H

C}
{D
u_

i.r'x

J
II

O
cO

o_

,--t
LP_

C_
Oh

4

cO

_.4

c_
c_
o.1

rq

co
',.O
o,1

o_

_O
{YT
O ,--t

D--
©

O
rt

H o.1
t'---

o
o,J

LI"X

o&
o O

c_
,-t

o

oJ

.._.a-
co

4

{:O

[..__
a0

_4

---t
LP_
C_

0r_
-:f
o'}

O

O

26



0 GO 0

0

0

rq
@

I

4
©

%

bl]
-r-I

oes/w_l '_A

27



u_t ' eeB_Jad peJ!sep Moleq eOUDJ,S!G

0
0
0

o

8 i

o

Oo
oo _

o ®

0
0 m
B I

o
0
0 ._

0

28



I
0
0
oJ

I I I I I
0 0 0 0 0
0 0 0 0 0
0 0O _0 _ o,I

w>l '_5_Jad paJ!s_p M01aq a0u0_s!o

K)

oo
o

oo

_o
oJ o

°°_ .i
_g

0 _
I

d _
_o ®

%

b.O
,r-t

o
0
if)

0

29



0
II

E
_L

E

II

0

0

0
0
o
0
0

0
0
0
c%

OJ

0
0

0 nr"
0
0
c%
0
m

0
0
0
o"

0

-I-)
o
o
q_
cH
(D

u}

©
4_

©

©
©

4 _

.H

m
m

®
(D
bO
.H

(U
P_

I

/
(I)

bO
.r-I
F_

I I I I I
0 0 0 0 0
0 0 0 0 0
0 00 co _- 0J

w_' aeBiJad paJ!sep aAOqI:)aouo$s!(]

0

30



I I I I I I
0 0 0 0 0 0 0

Jq '_gB!Jgd 0_ _uu!_ _!SUD_I

0
0
0

0
0

0
0
0
0

c)
0

(D
P_

o4_

-p

_o
o Q _
0 °_

0 o_
OJ

.._i hO

,-_

_ ,

0 _
0 _

0 _
0

0

3]-



I
0
_0

I

0
uD

0

I

0

0

®r-I o

o

I

_ .!

32



0 0 0 0 0 0 0 0 0 0
0 Q0 _ _'- o_ 0 _ _ _" e_

_q 'ea6ued o¢ uo!¢oe[u! uJoq euJ!l

0

33



I
(.0

/

(9
I

i,g')

O
O

I
I O

O

O

43
,H

b.0

4._
0)

,q

.H

o

©

_)

(9

I

©
-0

o

°r-t

©

.r-4

©

%
(1)

c_

©

-o
©
©

I

©

hi?
.H





J



I
0
0
0

0

E

II

0

d

0

0
0
o.
0
to

8

0
r_ g

o

8
Q

C_I

8

bO
.H

%
0 ®
0 _
0 '

0 _

b.O

0 _
0
Q
0
if)

0

3_



d
II

0
0
cO

0
0

U.IH _JOJJ_

0
0

aaBiJ_)d S_I

0
0
Q
0
0

0
0
o
0

E

8 _ ;_
-_ ® _

_ 80 *-- _
0 0 _ ,

(IJ

0
.r-I

r'r"

0
0
o.
0
ID
OJ

0
0
0

0o

36



I I I I I
LO ur) _" rqr) 04

oeslw_l ',_t!::)OleA I D!poEI

o

o

o
o
b9

.H

o

O
o
or3

.r--I

4._

%
%
O

%
O

O
O
O

d
©
,-t

o

b.0

a3
%

4_
c6

o
%

.r--I

%

4-_

O

%
O

.r-t

-o
.H

o
r--t

!

&
O

%

g
.H

37



u

E

0

i

II
1)

I I I

0

q)

_L)

\

I

_eS/LU) I _,_$!_OleA ID!pDEI

o

©

(D
_D
BD
.,--I

0
o
c_

_3

.H
4_

h
%

°
_ o
E _

_ o

o.1

_) o

_ •

I

0
._._ "_

-1- ._

©

h
o

o
r_

!

S
rt

%

b.O

38 N_s_-_g_y, _ A-691





,z


